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The dynamics of a viscous particle surrounded by an elastic shell of arbitrary 
thickness freely suspended in a general linear flow field is investigated. Assuming the 
unstressed shell to be spherical, an analysis is presented for the case in which the 
flowinduced deformation leads to small departures from sphericity. The general 
time-dependent evolution of shape is derived and various special cases (purely elastic 
sphere, rigid and gaseous interior, elastic membranes) are discussed in detail. It is 
found that for steady-state flows the equilibrium deformations are absolutely stable 
and depend only upon the shell thickness, although the rates a t  which they are attained 
show the effect of the inside viscosity, too. 

1. Introduction 
Any non-rigid particle suspended in an immiscible liquid that undergoes any type 

of non-uniform flow will in general deform from the shape it would assume a t  rest. 
Even if the shape a t  rest is spherical and even if the deformation induced by the flow 
field is small, only a few models have been extensively investigated. Apart from the 
liquid-droplet model there are the purely elastic or viscoelastic particles (Roscoe 1967 ; 
Goddard & Miller 1967) and the microcapsules (Barthks-Biesel 1980; Guerlet, 
Barthks-Biesel & Stoltz 1977). The latter term was proposed for viscous particles that 
are enclosed by an infinitely thin elastic membrane. Natural extensions of that model 
that come to mind include rheologically complex membranes, non-spherical capsules 
and membranes of finite thickness. I shall concentrate on the latter case and 
investigate the small (time-dependent) deformation of a viscous particle surrounded 
by an elastic shell of arbitrary thickness. 

I n  a recent paper (Brunn 1980) I focused attention on the constitutive equation 
for a dilute suspension of such particles. For a spherical shell (outer radius 6, inner 
radius a )  the suspension was found to comprise a generalized Maxwell fluid with four 
time constants. For certain limiting cases less than four characteristic times suffice. 

Examples include the purely elastic sphere with just one time constant or the 
infinitely thin elastic membrane, where only two such constants survive the 
(b-a) /b  + 0 limit. 

To arrive at these results I assumed the particles to remain spherical. Obviously, 
this cannot be exact since particles of this type will in general deform. Consequently, 
the solution obtained has to be considered as the zeroth-order result provided that 
the deviation from spherical shape is sufficiently small. It is the purpose of the present 
paper to ascertain the conditions for which the deformation is indeed small by 
studying the actual time-dependent evolution of shape. 

More explicitly, we assume the deformation to be of order E ,  where E 4 1.t Cox 

t It is possible that the outer deformation requires a different E than the inner deformation. 
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(1969) has shown in the similar problem of drop-deformation how one can formally 
expand expressions for dependent variables in the small parameter E without 
specifying the content of E a t  the outset. As soon as specific results are obtained the 
actual value of E can be read off. We shall employ that idea, expecting - on the basis 
ofcox's (1969) results - that  in this way the problem of the determination of the shape 
in a general time-dependent flow will be no more difficult than the determination of 
the shape in a simple shear flow. 

I n  $ 2  we shall formulate the problem mathematically and derive an explicit 
expression for the slightly deformed spheres (inner and outer). In $3  various special 
cases (elastic particle, rigid inside, gaseous inside, elastic membrane) will be considered 
in detail. Finally, in $4 we will consider steady-state flows and show that the 
equilibrium shapes ultimately obtained are ellipsoids, their main axes coinciding with 
the principal directions of the rate-of-strain dyadic. 

2. The evolution of shape 
Consider a viscous drop (shear viscosity qi) surrounded by an elastic shell (shear 

modulus p), which is suspended in a fluid of shear viscosity v0. Assume that all 
materials are incompressible and that in its undeformed or stress-free state the elastic 
region is a spherical shell of radii a and b, a < 6. The problem now consists in 
determining the deformation of the particle when it is placed in an infinite flow field 
whose (time-dependent) velocity distribution vo is prescribed far from the particle. 
More specifically, we only consider velocity fields that, in the absence of the particle, 
vary linearly with position, i.e. 

vo -+ Vo = r . Eo(t) + n(t) x r as r -+ co . (2.1) 

Here, CZ is half the vorticity vector, Eo the 'undisturbed' rate-of-strain dyad, and r 
is measured from the particle centre. 

Using for the deformed surfaces the expressions 

ro = b [ l  + € b  gb(p, t)l, ( 2 . 2 a )  

ri = all + E , g , ( t ,  t ) ] ,  t = -, ( 2 . 2 b )  

we shall assume that the E S ,  although unknown a t  this stage, are very small. (Note 
that to first order in E we have ro = b+u, l , ,  within an analogous expression for ri.) 
Previously, it was shown that, in the absence of any inertia effects, the velocity fields 
inside and outside (termed di) and do), respectively) and the displacement field u 
of the elastic region for the undeformed particle can only be of the form (Brunn 1980)t 

r 
r 

( 2 . 3 ~ )  

t The assumption of small deformation allows us to use the concept of linear elasticity, as first 
approximation. 
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with? A = a, (2.3 b )  

( 2 . 3 ~ )  1; 3 r2 
y(0) = y(0) + ~ r-3 r . ~ ( 0 )  + X : - ~ ( 0 )  + b ( O )  

5% Lo 
a3 

Here 

(r-l) (2 .4)  X=-- 
ar ar ar 

is a symmetric and irreducible tensor of third order. The eight dyads E(’), W), E(e), 
C(e),  de), b(e), C(O) and b ( O )  are uniquely determined by requiring the stress forces 
and velocity fields to  be continuous across each interface. For the situation a t  hand, 
this in itself is an initial-value problem. If we employ a Laplace transform-denoted 
by an overbar on the corresponding function - it  turns out that  all dyads are linearly 
related to EO, the undisturbed rate-of-strain dyad Eo acts as ‘driving force ’). Inserting 
these results back into (2.3), we get for tir, the Laplace transform of the radial 
component of the displacement field, 

Ur(r  = 6 )  =f,, Eo :Y, 

f q r  = a )  =fa E o  : Y, 

Y = Y(P) = 3PP- 6. 
with 

Explicitly, putting 

with 
f = f (s )  = ~, fx (T) ,  T = ST, 

40 
To = - 

U 

a characteristic time and s the ordinary Laplace variable, we have 

(2.9b) 

with 

All coefficients e, ai and At are, for fixed value of the viscosity ratio 

D ( T )  = l?, T4+P3!P++Pz++T+Po.  (2.10) 

tenth-order polynomials in the shell thickness ratio 

b 
a 

x = -, 

(2.11 a )  

(2.11 b )  

while they are second-order polynomials in h if x is fixed. It will prove convenient to 
display the A-dependence explicitly by putting 

Pz = P2(x, A )  = P,, + APZ1 + hZP,,, (2.12) 

. t Note that this result implies that the reference configuration, relative to which the displacement 
u is defined, rotates with the fluid. Since the elastic region is uniform, the identity of a material 
point passing through a given position at  a given time is irrelevant. Consequently, the solid-body 
rotation of the shell can be subtracted out of the problem. 
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where the pZi are only dependent upon x (tenth-order polynomials). Analogous 
definitions will be used for all the coefficients (see appendix). 

To first order in the small deformation parameter e the radial component of the 
displacement field determines the shape of the deformed sphere (with ro = b+u,Ib 
to first order in E ,  with an analogous expression for Ti). Thus, using (2.5) and (2.7), 
we get by recalling (2.2) 

eb g b  = j: dt’fb (7) Eo(t’) Y(f), ( 2 . 1 3 ~ )  
t-t’ 

Here f, and fb denote the inverse transforms o fE /a  andfilb, respectively. As shown 
before (Brunn 1980), the four roots q of D(T) are real, non-positive and, in general, 
distinct.t Consequently, putting 

€ b g b ( f > t )  = ebGb(t) ‘Y(f), (2.14) 

with a similar definition for G,( t ) ,  we get 

and 

(2.15a) 

(2.15b) 

Here, D ’ ( q )  is the derivative of D with respect to T evaluated a t  q. 
Equations (2.14) and (2.15) are the desired results. They represent ellipsoids whose 

orientation of the major and minor axes will, in general, not coincide with the 
instantaneous principal directions of Eo(t). Rather the whole history of the rate-of- 
strain dyad matters. The details of the particlefluid system (i.e. h and 2) are 
contained in the (four) characteristic times 

7 .  = -- 70 (2.16) T -  
Some specific examples shall suffice to illustrate this point. 

3. Examples 
3.1. The elastic sphere 

For a particle consisting solely of elastic material we have a = 0. Equivalently, this 
requires x +a, and in this limit assumes the particularly simple form 

for x+a. 
1 

f i ( T )  = ib- 
T+t  

2 

370 

This implies 
€bGb = ;J:dfexp[ --(t-t‘)] Eo(t’), 

so that only one characteristic time 3y0/2,u has to be reckoned with. The sole 
importance of this time constant has been realized before (Goddard & Miller 1967 ; 
Roscoe 1967). 

t If a multiple root occurs this root is also a root of the numerator (see 53.2) 
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FIGURE 1.  The roots of Do for a rigid interior as functions of the shell thickness 8. 

3.2. Rigid interior 

Mathematically we can view a rigid interior as an infinitely viscous fluid. Thus, taking 
the h + 0 limit, the result 

& = O  for h = O  (3.3) 
follows at once. Actually, we could have anticipated that relation since the inside can 
not deform at all. On the other hand 

implies that the sum in ( 2 . 1 5 ~ )  contains only two terms.t Introducing the (dimen- 

1 
sionless) shell thickness 

(3.5) a=-- - 1-- ,  
b x 

a glance a t  figure 1 reveals that the roots 3 increase as the shell thickness decreases. 
As a matter of fact for S < 0 3  the root T, is so large that we may approximate it 
by infinity. With this understanding we have for 6 < 0 3  

b-a 

with 

If the thickness of the shell decreases further, say to less than 003,  we are justified 
in taking the % -P 00 limit, too. Although formally this leads to 

lim eb Gb(t)  = s T , E o ( t ) ,  
T,-rm p20 

(3.7) 

the actual value of a2,/P,, at such small shell thicknesses is zero (see also figure 4). 
What this means is that an elastic shell surrounding a rigid sphere has to be sufficiently 
thick before it will show any deformation. This, however, was to be expected. 

The double root of D for T = 0 is also a double zero of No. 
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FIGURE 2. The roots of D ,  for a gaseous interior as functions of the shell thickness 8. 

At first sight i t  may seem strange that we have plotted q / S  instead of Ti.  The reason 
is that we want to include all shell thicknesses. For infinitely thin membranes one 
uses membrane stresses that require the quantity (b-a),u instead of ,u. A balance 
between viscous and elastic forces at the membrane surface reveals then that instead 
of r, one needs r,/S. Recalling (2.15), we thus have to know the behaviour of q/& 
as S approaches zero. For the case a t  hand T J S  and T2/6 blow up like S - 2  and SP4 
respectively. Although q / S  is needed only for 6 + 0 we shall always use it. For given, 
but non-zero, 6, this means that we are merely scaling the roots q. 

3.3.  The gaseous interior 

Here the limit h +CO is appropriate, and the results 

follow readily. Thus again only two roots 

(3.8a) 

(3 .8b )  

(3.9) 

have to be reckoned with. As can be seen from figure 2, the roots are never very large 
over the whole domain of S with 

T,/6=-0.438 for S-rO,  T , / S = - #  for S + l ,  

T , / S = - 4 5 6  for 6 4 0 ,  T,/S=-g for 6 +  1 

as limiting values. Thus, apart from certain additional simplifications to be discussed 
below, (2.15) have to be used as they stand, although only two terms appear in the 
sum. 
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3.4. The membrane approximation 

If the elastic shell is very thin we put S < 1. Excluding the cases A = 0 and A = CO, 

which have already been treated, i t  is readily checked that in this limit two 
(Tl, T,) of the four roots of D are proportional to S, one (T3) is proportional to  
S-l, while T4 is proportional to  S-3 .  As long as we admit flow fields that may vary in 
time arbitrarily rapidly, all four roots have to be kept. Excluding such exceptional 
flow fields offers the opportunity to approximate by infinity. After all, as 
seen from the numerical results obtained before (Brunn 1980), we get for A = 0-2 and 
S = 0.01 the ratios Tl : T,: : % = 1 : 8 : 31-8 x lo3 : 50.5 x lo', while for the same h but 
a t  a shell thickness of S = 0-002 we have Tl: T,: T3: = 1 :8: 7.8 x lo5: 30.5 x lolo. 
Thus, taking the limit TL4 + c o , ~  we eventually obtain 

and 

ebGb = e,G,  = 17, dt'exp -(t-t') Eo(t')+C, dt'exp -(t-t') Eo(t') (3.10) f [: 1 J-: [: 1 
with 

(3.11 a )  

(3.11b) 

A = & ( ~ ) ~ { 1 + ~ A + ~ A 2 } ~ .  ( 3 . 1 1 ~ )  

Equation (3.10) (which, by relying on a membrane approximation from the outset, 
agrees with BarthBs-Biesel & Rallison 1981) implies that  for a sufficiently thin shell 
the time evolution of the outside surface exactly equals the time evolution of the inside 
surface. But, as stated before for a shell of given (although small) thickness, there are 
upper limits on the time variation of the flow field beyond which this result will fail. 
Phrased differently, (3.10) should be the first-order small-deformation result of an 
elastic membrane (such that the membrane equations apply). If a thin shell is 
classified as a membrane for one flow field, a much thinner shell may be needed in 
order for the shell to be called a membrane for a more rapidly varying flow field. For 
example, in oscillatory flow of frequency w, the relaxation time r3 (besides 71 and r2) 
would have to be taken account of if I W T ~ / S (  is not negligible in comparison to S-2. 
Only an infinitely thin shell (no thickness) constitutes a perfect membrane (two 
relaxation times). 

4. Steady-state flows 
If the flow field is independent of time the integrations (2.15) are readily performed. 

Alternatively, we can employ the final-value theorem for a Laplace transform. Since 
the are real and negative, the equilibrium deformations, which are asymptotically 
attained, are 

r , s E o  ( A  = 0)  

' b G b = [  1, (4.1 a )  
7 , 9  Eo (otherwise) 

t Strangely enough there is no contribution from these limits. This contrasts with our previous 
study, where we found that these limits had to be taken carefully, since they made non-vanishing 
contributions to the rheological equation of state. 

18 E L M  126 
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and 0 ( A  = 0) 

A02 

Po2 

E,G, = 
7,- Eo (otherwise) 

(4.1 b) 

Thus the outer and inner surfaces each deform into an ellipsoid whose major and 
minor axes coincide with the principal directions of EO. Since aO2/P,, as well as Ao2/Gz 
depend only upon x (or 6) the steady-state deformation is independent of h for h $: 0. 
This fact, which for a membrane was first pointed out by Guerlet et al. (1977), is 
remarkable, for the transient terms leading to the stable equilibrium deformation do 
depend upon A. 

Without loss of generality we will concentrate on the important case of two- 
dimensional motions, which can always be expressed as 

V,=Gy, V,=aGx (-1GaGl). (4.2) 

Here G denotes the shear rate. Varying the parameter a from - 1 to  zero and finally 
up to  1 produces all homogeneous two-dimensional flow fields from pure rotation 
(a = - i ) ,  to pure shear (a = 0) and finally pure straining motion (a = 1 ) .  If the angle 
$ is measured relative to the x-axis, the deformed surfaces are represented by 

r,($) = b ( 1 +  D, sin 24}, 

r i ( 4 )  = a{l + D, sin 2$}. 

(4.3u) 

(4.3b) 

Here D, and D, are indications of the corresponding deformations. Their geometrical 
significance becomes apparent if we write 

where Lb is the longest and B, the shortest axis of the ellipsoid. An analogous 
expression holds for D,. Putting 

D ,  = (1 +&%D$, 6 (4.5) 

and similarly introducing D,*, we have explicitly 

( 4 . 6 ~ )  

(4.6b) 

0 ( A  = 0) 

D,*= [?& S (otherwise) 
2 G2 

Since DZ and D,* are both independent of A,  for A + 0, figure 3 is characteristic for 
all particles, for which b = 1 ,  a = + and (1 +a) T~ G = 01. 

I n  figure 4 the functions D,* and D$ have been plotted. The exceptional case where 
the inside is rigid is shown in figure 4 (a) .  I n  this case, DZ vanishes like cS3 as 6 + 0. 
Consequently, 6 has to be sufficiently thick (6 2 012)  in order for any deformation 
of the outside to occur. Basically this confirms our earlier result of 53.2. Furthermore, 
in this situation an increase in the thickness of the elastic region leads to an 
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FIGURE 3. The first-order deformation of the shell b = 1, a = t (8 = 4) in a weak two-dimensional 
flow (1 +a) @,/S = 01.  The dotted curves represent the unstressed shell. 

increasingly larger deformation. The final limiting value of a for D$ as 6 + 1, i.e. for 
the purely elastic particle, has already been reported (Roscoe 1967). 

As shown in figure 4 ( b ) ,  for all non-zero values of h no monotonic behaviour of 02 
or D$ is found. Only at 6 = 0 does 02 assume the same value as D$, namely 3. But 
6 = 0 corresponds to an infinitely thin membrane. Thus, it is no surprise to find that 
in this case the theory of membranes furnishes exactly the same result (Guerlet et al. 
1977). 

For all other values of 6, the function D$ is strictly less than 02. Actually, we should 
not compare DZ with 02, but rather D$ with (1 -6) D2.t From this we see that 
starting from an infinitely thin membrane (6 = 0) the actual deformation yo- b of the 
outer surface essentially coincides with the actual deformation ri - a of the inner 
surface up to a shell thickness of 6 = 03. Beyond that thickness, the outer surface 
deforms more than the inner surface. Taking formally the limit of a purely elastic 
particle furnishes the maximum difference (the limiting values are 0 and 
respectively). 

Before leaving this subject, i t  seems worthwhile to point out that  the results of 
that chapter could also have been obtained by using for do) the Aow field corresponding 
to homogeneous flow around a freely rotating rigid sphere. The steady-state 
deformations of the shell then result by invoking a stress balance across each fluid- 
solid interface. This approach, which was successfully employed by Barthks-Biesel 
(1980) for an infinitely thin membrane (even up to the O(e2) deformation) is far 
simpler, but furnishes no clues to the stability of the equilibrium solution. It does 
demonstrate, however, why the steady-state results have to be independent of A. 

t Note that the term b/(b-a)  is required for the outer surface as S + O ,  while a/@-a)  is the 
corresponding term for the inner surface. 

18-2 
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5. Summary and conclusion 
The fact that  four roots, and consequently four characteristic times, have to be 

reckoned with has previously been pointed out (Brunn 1980). Each dyad appearing 
in the expression for the displacement field involves all four time scales. Associating 
a given characteristic time with a particular mode of deformation may not be possible, 
especially since each dyad shows a different evolution in time. Only the overall 
deformation of the shell, involving the combination 

3 3 9 
7P 2prz r4 
-? C" + rEe +- c"+- be,  

has been studied in this paper. 
According to our basic equations (2.13) and (2.15), the first-order deformations of 
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the inner and outer surfaces are of the form 

(5.1 a )  

B u g ,  = 7,EFU(h,6; t j .  (5.lb) 

Here E is some measure of the maximum value of the rate-of-strain dyad of the 
undisturbed flow, and the functions Fb and F, have explicitly been obtained for a 
number of special cases. By comparing (5.1) with (2.15) it  becomes apparent that (i) 
the maximum deformation requires the t --* co limit for Fb and F, (note that the roots 
3 are real and non-positive), and that (ii) this result (which is the steady-state limit) 
is always stable. This leads to 

( 5 . 2 ~ )  lim Fb(h, 6, t )  = -, a 0 2  

t + m  6, 
A02 

t-oo 6 2  

lim F,(h, 6, t )  = -, (5.2b) 

provided that h-l is finite. The functions ao2/P,, and Ao2/Po2, depending only upon 
the shell thickness 6, have been extensively studied in $4. This leads us to conclude 
that the deformations investigated in this study will indeed be small, provided that 
the shear modulus p is large, the value of E is small, or both (weak flows). 

Since ,u large corresponds to  a nearly rigid membrane, the alternative method of 
solution presented a t  the end of $ 4  is physically obvious. 

There is one case in which E need not be small. This concerns the case for which 
the interior is extremely viscous, h M 0. For h = 0 the right-hand sides of (5.2a, b )  
have to be replaced by azo/Pzo and 0 respectively. Although a2,/PzO is strictly 
non-negative it tends to zero like J2 for 6 + 0. Thus we expect small deformations 
for sufficiently thin shells with a very viscous interior, even though the strength of 
the flow field may be unlimited. On the other hand, in order for both the outer and 
inner deformations of a shell of finite thickness to be small, a weak flow field is always 
needed. 

Finally, we note that, by using the 0 ( 1 )  velocity fields, the O(s)  deformation can be 
calculated (as demonstrated). With the deformed shape thus specified, the O ( E )  fluid 
problem can be attacked analogously to  yield eventually information about the O(s2) 
deformation. While strictly speaking this is true, two inherent difficulties have to be 
solved. The first one, already present a t  O( l ) ,  has to do with the interaction between 
a fluid and a deformable solid and the different reference frames customarily used : 
Eulerian for the fluid and Lagrangian for the solid. This means that the velocity of 
each elastic interface has to be expressed in terms of the coordinates appropriate for 
the frame chosen. At O(e) ,  where the problem is highly nonlinear, this is a non-trivial 
task, Secondly, a deformation of O(e2) can in general no longer be described by means 
of the linear stress-strain relation used in this paper. To tackle such problems, a 
more-general framework is needed. 

Appendix. The coefficients e, at and Ai appearing in the functions 
D ,  Nb and Nu 

Using the definition (2.12) to extract the A-dependence, we have explicitly 

p4 = P~~ = 2~10-yx7 +2iX5-y23+2, 

p31 = b x  38 19 38 4, 

(A 1) 

(A 2a) 

(A 2b) 

p - 89 lO+?x7-7x5+2&3-4, 
30 - 24x 

9 10 + Z 5 ~ 7 -  lUx5 + 2ZX3 - 
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